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Radiation of relativistic charged particles in a system with one-dimensional randomness

Zh. S. Gevorkian*
Institute of Radiophysics and Electronics, Ashtarak 2, 378410, Armenia

~Received 13 November 1995; revised manuscript received 15 October 1997!

Radiation of relativistic charged particles in a system of randomly spaced plates is considered in the paper.
It is shown that for a large number of plates (N@1), in the wavelength rangel! l !L ~wherel is the photon
mean free path andL is the system characteristic size! and for anglesucosuu@(l/2p l )1/3, pseudophoton
diffusion represents the major mechanism of radiation. The total intensity of radiation is investigated and its
strong dependence on the particle energy and plate number is obtained.@S1063-651X~98!03702-7#

PACS number~s!: 42.65.Wi, 34.50.Bw
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I. INTRODUCTION

Charged-particle radiation in layered media has been c
sidered in many papers~see, e.g.,@1,2# and references
therein!. The interest in these systems is caused by the p
sibility of their use as high-energy particle detectors@2#. De-
tecting properties of these systems are based on the trans
radiation. Transition radiation originating in such syste
can be explained in the following way~see@1,2#!. A charge
moving in a medium creates an electromagnetic field~a
pseudophoton!, which is scattered by the inhomogeneities
dielectric permittivity and converted into radiation. The k
problem is to account correctly for the scattering
pseudophotons on the inhomogeneities.

In earlier articles~see, for example,@2#! that addressed th
problem of radiation of relativistic charged particles in a s
tem of plates embedded in a homogeneous medium the
flection of the electromagnetic field by an individual plate
neglected. However, from experience with three-dimensio
random media@3,4# we know that the multiple scattering o
electromagnetic fields plays an essential role. This role
particularly important in the optical region.

In the present paper we consider multiple-scattering
fects ~taking into account also reflection! when a charged
particle radiates passing through a one-dimensional ran
medium. Such media can be in particular those system
which the plates are randomly spaced in a homogeneous
dium.

It turns out that multiple scattering of the pseudopho
leading to its diffusion is dominant in the medium and th
diffusion contributes to the radiation intensity. The diffusio
contribution leads to a strong dependence of the radia
intensity on particle energy and plate number, a fact tha
important for the detecting properties of the system. N
that the diffusion contribution is absent in an ordered st
of plates.

II. FORMULATION OF THE PROBLEM

The system considered in the paper consists of a stac
plates randomly spaced in a homogeneous medium. Le
plates fill the regionszi2a/2,z,zi1a/2 ~where a is the
plate thickness andzi are random coordinates!. The dielectric
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permittivity of the system may be represented in the form

«~z,v!5«0~v!1(
i

@b~v!2«0~v!#

3@ uQ~z2zi2a/2!2Q~z2zi1a/2!u#, ~1!

where«0(v) and b(v) are, respectively, dielectric permit
tivities of the homogeneous medium and of the plates anQ
is a step function. It is convenient to represent the dielec
permittivity as a sum of average and fluctuating parts

«~z,v!5«1« r~z,v!, ^« r~z,v!&50, ~2!

where«5^«(z,v)&, « r!«, and averaging over the random
coordinates of plates is determined as

^ f ~z,v!&5E )
i

dzi

Lz
f ~z,zi ,v!, ~3!

where Lz is the system size in thez direction. In the fre-
quency domain, Maxwell’s equations have the form

¹W 3EW ~rW,v!5
iv

c
BW ~rW,v!,

¹W 3BW ~rW,v!5
4pe

c

vW
v

d~x!d~y!eivz/v2
iv

c
DW ~rW,v!,

~4!

¹W •DW ~rW,v!5
4pe

v
d~x!d~y!eivz/v,

¹W •BW ~rW,v!50, DW ~rW,v!5«~z,v!EW ~rW,v!.

Here ṽi ẑ is the velocity of the particle. For convenience w
introduce the potentials of electromagnetic field

EW ~rW,v!5
iv

c
AW ~rW,v!2¹W w~rW,v!. ~5!

Using Eqs.~4! and ~5!, we obtain the equation forAW (rW,v),

¹W 2AW 1
v2

c2 AW ~rW,v!«~rW,v!2¹W F¹W •AW 2
iv

c
«~rW,v!w~rW,v!G

5 jW~rW,v!, ~6!
2338 © 1998 The American Physical Society
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57 2339RADIATION OF RELATIVISTIC CHARGED PARTICLES . . .
where jW(rW,v) is the Fourier transform of the current of th
charged particle

jW~rW,v!5
4pe

c

vW

v
d~x!d~y!eivz/v. ~7!

Imposing the Lorentz gauge condition on the potentials,
finally obtain

¹W •AW 2
iv

c
«~rW,v!w~rW,v!50,

~8!

¹W 2AW 1
v2

c2 «~rW,v!AW ~rW,v!5 jW~rW,v!.

It follows from the symmetry of the problem that the vect

potentialAW is directed in thez direction:Ai5d ẑiA(rW,v).

III. RADIATION TENSOR

As usual, we decompose the electric field into two pa

EW 5EW 01EW r . HereEW 0 is the electric field of the charged pa
ticle moving in the homogeneous medium with dielect
permittivity « andEr is the radiation field caused by fluctua
tions in the dielectric permittivity. We define the radiatio
tensor as

I i j ~RW !5Eri ~RW !Er j* ~RW !. ~9!

HereRW is the radius vector to the observation point, which
far from the systemR@L. The vector potential is decom

posed in a similar way:AW 5AW 01AW r , whereAW 0 and AW r , as
follows from Eq.~8!, satisfy the equations

¹W 2AW 01
v2

c2 «AW 05 jW~rW,v!,

¹W 2AW r1
v2

c2 «AW r1
v2

c2 « rAW r52
v2

c2 « rAW 0 . ~10!

It is convenient to express the radiation intensity in terms

the radiation potentialAW r ,

^I i j ~RW !&5
v2

c2 d ẑid ẑj^Ar~RW ,v!Ar* ~RW ,v!&

1
d ẑi

« K Ar~RW ,v!
]2

]Rj]z
Ar* ~RW ,v!L

1
d ẑj

« K Ar* ~RW ,v!
]2

]Ri]z
Ar~RW ,v!L

1
c2

v2«2 K ]2

]Ri]z
Ar~RW ,v!

]2

]Rj]z
Ar* ~RW ,v!L .

~11!

In obtaining Eq.~11! we assumed that the fluctuations
dielectric permittivity are much smaller than its mean va
« r!«. To carry out averaging over the random coordina
e

s

f

s

of plates, we express the radiation potentialAr in terms of
the Green’s function of Eq.~10!,

Ar~RW !52
v2

c2 E « r~rW !A0~rW !G~RW ,rW !drW,

F¹W 21k21
v2

c2 « r~z!GG~rW,rW !5d~rW2rW !, ~12!

wherek5vA«/c.

IV. GREEN’S FUNCTION

The bare Green’s function of Eq.~12! satisfies the equa
tion

@¹W 21k21 id#G0~rW2rW !5d~rW2rW !, ~13!

where id, as usual, is an infinitesimal imaginary term. Th
solution in the momentum representation has the form

G0~qW !5
1

k22q21 id
. ~14!

In the coordinate representation, one has

G0~r !52
1

4pr
eikr . ~15!

To perform the averaging, we use the impurity-diagra
method@5#. Summing the diagrams in the ladder approxim
tion, we obtain Dyson’s equation for the average Gree
function

~16!

The dotted line denotes the correlation function of the o
dimensional random field

---5B~pW !5~2p!2d~pW r!B~ upzu!,

B~ uz2z8u!5
v4

c4 ^« r~z!« r~z8!&, ~17!

wherepW r is the transverse component ofpW . The solution of
Eq. ~16! can be represented in the form

G~qW !5
1

G0
21~qW !2E dpW

~2p!3 B~pW !G0~qW 2pW !

. ~18!

Using expression~14!, we obtain for the averaged Green
function the expression

G~qW !5
1

k22q21 i Im S~qW !
, ~19!
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in which the imaginary part ImS of the self-energy is deter
mined by Ward’s identity

Im S~qW !5E dpW

~2p!3 B~pW !Im G0~qW 2pW !

5
1

4Ak22qr
2 @B~ uqz2Ak22qr

2u!

1B~ uqz1Ak22qr
2u!#, uqW ru,k. ~20!

The decay length of the pseudophoton in thez direction is
determined by the imaginary part of the Green’s function
~see, e.g.,@6#!

l ~qW !5
Ak22qr

2

Im S~qW !
. ~21!

As expected, the decay length depends on the pseudoph
momentum direction. In the case where the momentum
directed in thez direction, one obtains from Eqs.~21! and
~20!

l ~u50!5
4k2

B~0!1B~2k!
. ~22!

We shall call this quantity the pseudophoton mean free p
Using Eqs.~1!, ~2!, and ~17! one finds for correlation

function

B~qz!5
4~b2«!2n sin2 qza/2

qz
2

v4

c4 . ~23!

Heren5N/Lz is concentration of plates in the system. Fro
Eq. ~23! it follows that B(0)5v4/c4(b2«)2na2. On the
other hand, whenka@1, B(2k)/B(0);1/(ka)2!1. There-
fore, the photon mean free path is

l[ l ~u50!' H4k2/B~0!,
2k2/B~0!,

ka@1
ka!1. ~24!

The calculation carried out above is correct only in the we

scattering regime, when ImS(qW)/(k22qp
2)!1. Using Eq.~20!

we obtain

B~0!1B~2kucosuu!
4k3ucosuu3 !1. ~25!

From Eq. ~25! it follows that at u'p/2 the condition of
weak scattering is not satisfied. This is natural because in
case the pseudophoton moves parallel to the plates. Ta
u5p/22d and using Eqs.~22! and ~25!, one has d
@(1/kl)1/3.

V. RADIATION INTENSITY IN THE SINGLE
SCATTERING APPROXIMATION

Substitution of Eq.~12! into Eq. ~11! gives the following
expression for the radiation tensor:
s

ton
is

h.

-

is
ng

I i j ~RW !5d ẑid ẑj

v6

c6 E drW drW8A0~rW !A0* ~rW8!

3^« r~rW !« r~rW8!G~RW ,rW !G* ~rW8,RW !&

1
v2

c2

1

«2 E drW drW8A0~rW !A0* ~rW8!

3K « r~rW !« r~rW8!
]2

]Ri]z
G~RW ,rW !

]2

]Rj]z
G* ~rW8,RW !L

1d ẑj

v4

c4« E drW drW8A0~rW !A0* ~rW8!

3K « r~rW !« r~rW8!G* ~rW,RW !
]2

]Ri]z
G~R,r !L

1d ẑi

v4

c4« E drW drW8A0~rW !A0* ~rW8!

3K « r~rW !« r~rW8!G~RW ,rW !
]2

]Rj]z
G8* ~rW,RW !L . ~26!

In the single-scattering approximation, we substitute
Green’s functions appearing in Eq.~26! by bare functions

~15!. Since the observation pointRW is far from radiating sys-
tem, one finds, using Eq.~15!, the useful relations

G0~RW ,rW !'2
1

4pR
eik~R2nW •rW !,

~27!

]2G0~RW ,rW !

]Ri]z
'

k2ninz

4pR
eik~R2nW •rW !, R@r .

HerenW is the unit vector in the direction of observation poi

RW . Inserting Eq.~27! into Eq.~26! and using Eq.~17!, for the
radiation tensor we find

I i j
0 ~RW !5

v2

c2

1

16p2R2 E drW drW8eiknW •~rW2rW8!

3B~ uz2z8u!A0~rW !A0* ~rW8!

3@d ẑid ẑj2d ẑinjnz2d ẑjninz1ninjnz
2#. ~28!

By solving Eq.~10!, we easily obtain

A0~qW !52
8p2e

c

d~qz2v/v !

k22q2 . ~29!

Using Eq.~29! in Eq. ~28! and integrating, we find the radia

tion intensity I (nW )5(c/2)R2I i i (RW ) in the single-scattering
approximation

I 0~nW !5
pe2

c
d~0!

B~ uk02knzu!nr
2

@k2nz
22k0

2#2

v2

c2 . ~30!

Here k05v/v, while the d-type singularity of Eq.~30! is
caused by the infinite path of the charged particle in
medium. If one takes into account the finite size of the s
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57 2341RADIATION OF RELATIVISTIC CHARGED PARTICLES . . .
tem,d~0! must be replaced byLz/2p. To analyze the angula
dependence of Eq.~30!, it is convenient to represent it in th
form

I 0~u!5
e2

2c

LzB~ uk02k cosuu!sin2 u

@g221sin2uk2/k0
2#2

v2

k0
4c2 . ~31!

Here g5(12«v2/c2)21/2 is the Lorentz factor of the par
ticle. Note some features of expression~31!: For relativistic
energies~g@1, k0→k!, the radiation intensity in the forward
direction, for short waveska@1, is significantly higher than
in the backward direction. The maximum lies in the range
anglesu;g21. This result is consistent with the results
@1,2#. SinceB;n, the radiation intensity in this approxima
tion, as expected, is proportional to the total numberN of
plates in the system.

VI. DIFFUSION CONTRIBUTION TO THE RADIATION
INTENSITY

In the diffusion approximation, the averages appearing
Eq. ~26! are determined by the diagrams

. ~32!

Here the filled rectangle corresponds to the diffusion pro
gator

.

Using Eqs.~26!, ~32!, and~33!, we obtain the expression fo
the diffusion contribution
f

n

-

I i j
D~RW !5

k2

16p2R2« E drW drW8B~r 2r 8!A0~rW !A0* ~rW8!

3E drW1drW2drW3drW4e2 iknW •~rW12rW2!P~rW1 ,rW2 ,rW3 ,rW4!

3G~rW3 ,rW !G* ~rW8,rW4!@d ẑid ẑj1ninjnz
22d ẑinjnz

2d ẑjninz#. ~34!

The diffusion propagatorP that appears in Eq.~34! is found
similarly to the three-dimensional case@4#. It follows from
Eq. ~33! that P(rW1 ,rW2 ,rW3 ,rW4) can be represented in form

P~rW1 ,rW2 ,rW3 ,rW4!5B~rW12rW2!B~rW32rW4!

3P~RW 8,rW12rW2 ,rW32rW4!, ~35!

whereRW 85 1
2 (rW31rW42rW12rW2) andP satisfies the equation

E dpW

~2p!3 F12E dqW

~2p!3 f ~qW ,KW !B~pW 2qW !GP~KW ,pW ,qW 8!

5 f ~qW 8,KW !. ~36!

Here

f ~qW ,KW !5G~qW 1KW /2!G* ~qW 2KW /2!. ~37!

As it will be seen further, one has to knowP whenKW→0. In
this limit, the diffusion propagator has the form@4#

P~KW→0,pW ,qW !5
Im G~pW !Im G~qW !

Im S~qW !
A~KW !, ~38!

where

A~KW !5F3E ~qW KW !2 Im G~qW !

Im2 S~qW !

dqW

~2p!3G21

. ~39!

ChoosingKW i ẑ and using Eq.~20!, we obtain

A~K !5F6K2k5

p E
21

1 dx x4

@B~0!1B~2kuxu!#2G21

. ~40!

Here we have changed variables while integrating over
angles. It follows from the form of the correlation functio
~23! that the main contribution into the integral~40! is given
by the values ofx close to unity~the corresponding angle
are close to zero!. Taking into account this fact, forA(K),
we have approximately

A~K !5
1

k

20p

3K2l 2 , ~41!

wherel 54k2/B(0) is the pseudophoton’s mean free path.
the expression for radiation intensity it is convenient to tu
to new variables of integration
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2342 57ZH. S. GEVORKIAN
RW 85 1
2 ~rW31rW42rW12rW2!, xW15rW12rW2 ,

~42!

xW25rW32rW4 , rW4[rW4 ,

which gives

I i j
D~RW !5

k2

16p2R2«
~d ẑid ẑj1ninjnz

22d ẑinjnz2d ẑjninz!D,

~43!

whereD is given by the expression

D5E drW drW8dRW 8dxW1dxW2drW4A0~rW !

3B~rW2rW8!A0* ~rW8!e2 iknW •xW1B~xW1!B~xW2!P~RW 8,xW1 ,xW2!

3G~xW21rW42rW !G* ~rW82rW4!. ~44!

In the Fourier representation Eq.~44! has the form

D5E dqW 1dqW 2dqW 3dqW 4

~2p!12 uA0~qW 1!u2B~qW 2!B~qW 3!B~qW 4!

3P~K8→0,2qW 32knW ,qW 11qW 21qW 4!uG~qW 11qW 2!u2.

~45!

Substituting Eq.~38! into Eq.~45! and integrating@using the
Ward identity~20!#, we obtain

D5A~K !Im S~knW !

3E dqW

~2p!3

B~ uAk22qr
22qzu!1B~ uAk22qr

21qzu!

B~0!1B~2Ak22qr
2!

3uA0~qW !u2. ~46!

Finally, we evaluate the integral over the momentum rema
ing in Eq. ~46!. Using Eqs.~20! and ~29! in Eq. ~46!, we
have

D5A~KW !Im S~knW !
16p2e2

c2 LzE dqW r

~2p!2

1

~k22k0
22qr

2!2

3
B~ uk01Ak22qr

2u!1B~ uk02Ak22qr
2u!

B~0!1B~2Ak22qr
2!

; ~47!

It follows from Eq. ~47! that for relativistic energiesk0
→k, the main contribution to the integral~47! is given by
-

the valuesqr→0. Taking into account this fact and the fa
that wheng2@ak the functionB, as well as Eq.~41!, varies
slowly, we find

D'
e2

c2

20p2

3K2l 2 Lz

B~0!1B~2kunzu!
k2

1

unzu
g2

k0
2 . ~48!

Substituting Eq.~48! into Eq. ~43! for the diffusion contri-
bution into the radiation intensity, we obtain finally

I D~nz!5
5

6

e2g2

«c S Lz

l ~v! D
3 12nz

2

unzu
. ~49!

In deriving Eq.~49! we substitute 1/K2 at K→0 by Lz
2 as

usual~and also assume thatLz!Lx ,Ly!. Note some peculari-
ties of the diffusion contribution. It is easy to verify tha
I D/I 0;Lz

2/ l 2@1. This means that forkucosuu3l@1 and l
!Lz the diffusion contribution is the major one. As on
should expect, the backward and forward intensities
equal to each other. Note that with an accuracy of unimp
tant numerical coefficients formula~49! is correct both for
short ka@1 and for longka!1 waves. All information on
randomness is contained in the mean free pathl (v). In the
next section we shall specify the form ofl (v) in particular
cases.

VII. PSEUDOPHOTON MEAN FREE PATH

The pseudophoton mean free path in our theory is
scribed by expression~24!. In the impurity diagram method
@5#, as usual, we do not take into account the diagrams
correspond to the situation of three or more plates at
same point. This is valid provided thatuAb/«21uka!1,
which means that for scattering of a photon on a plate,
Born approximation is fulfilled. However, it is well known
@5# that the formulas are also correct in the general c
provided one employs the exact scattering amplitude inst
of the Born scattering amplitude. In our case this means
formula~49! is correct in the general case provided a suita
expression is used for pseudophoton mean free pathl (v).

The photon mean free path in the medium is related to
photon transmission coefficient through a plate

l ~v!5
@12Re t~v!#21

n
, ~50!

wheret(v) is the photon transmission coefficient through
plate with photon momentum normal to the plate@6#
t~v!5

2iAb~v!

«~v!
exp~2 ika!

Fb~v!

«~v!
11GsinAb~v!

«~v!
ka12iAb~v!

«~v!
cosAb~v!

«~v!
ka

. ~51!
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57 2343RADIATION OF RELATIVISTIC CHARGED PARTICLES . . .
It follows from Eqs. ~49! and ~50! that the maximum of
spectral radiation intensity lies in the frequency region wh
the transmission coefficient is minimal. It follows from E
~50! that the minimal value ofl (v) is 1/n. Now we shall
clarify the conditions under which this value is achieved.
the Born approximationuAb/«21uka!1, using Eqs.~51!
and ~50!, we obtain

l ~v!5
2

nSAb

«
21D 2

k2a2

, ~52!

which agrees with Eq.~24!. More interesting for us is the
geometrical optics regionuAb/«21uka@1. Substituting Eq.
~51! into Eq. ~50! and neglecting the strongly oscillatin
terms, we havel (v);1/n. Thus, in the geometrical optic
region the photon mean free path does not depend on
frequency and radiation intensity is maximal. Integrating
spectral intensity over angles and frequencies in this reg
we find that the total intensity depends on the particle ene
asI t;g2. In contrast, the energy dependence of the radia
intensity in typical transition radiation from a single interfa
in the optical region is logarithmic~see, for example,@2#!. In
order to find the dependence of the radiation intensity on
number of plates, note thatLz5N/n and from Eq.~49! one
hasI t;N3. One of the important conditions for the applic
bility of the theory is the conditionl !Lz . SubstitutingLz
5N/n andl 51/n into this condition, we find a condition fo
the plate numberN@1.

Note that we did not take into account the absorption
photons. This is valid providedl ! l in ~wherel in is the photon
inelastic mean free path in the medium!. In the theory of
diffusive propagation the weak absorption (l ! l in) is taken
into account in the following way~see, for example,@7#!. If
the absorption is so weak thatLz,( l l in)

1/2, then expression
~49! remains unchanged. WhenLz.( l l in)

1/2 one must substi-
tute Lz

2 by l l in in Eq. ~49!,

I D~nz ,v!5
5

6

e2g2

«c

Lzl in~v!

l 2~v!

12nz
2

unzu
. ~53!
s

e

he
e
n,
y
n

e

f

It follows from Eq. ~53! that in this case the dependence
radiation intensity on the plate number is weakerI;N.

VIII. CONCLUSIONS

We have considered the diffusion contribution for rad
tion intensity of a relativistic particle passing through a sta
of randomly spaced plates. It was shown that for a la
number of platesN@1, in the wavelength regionl! l and
for the anglesucosuu@(1/kl)1/3, the diffusion contribution is
the dominant one. Note that the backward and forward int
sities of relativistic charged-particle radiation intensity a
equal, whereas in the regular stack case relativistic part
radiates mainly in the forward direction.

Now let us discuss the possible experimental realizati
of our theory. For applicability of the theory the fulfillmen
of the inequalitiesl! l (l)! l in ,Lz is necessary.

The transition radiation of relativistic charged particles
a stack of plates has been investigated experimentally
many papers~see, for example,@8#!. Unfortunately, in these
papers only the x-ray region was studied. In the x-ray reg
the above-mentioned inequalities are not satisfied. Opt
transition radiation of relativistic particles has been inves
gated in experimental work@9#. However, in this experimen
only one or two parallel plates were used. Samples in@9#
were prepared by vacuum deposition of various meta
coatings~Al, Ag, Au, and Cu! on Mylar foils 3.5mm thick.
Note that these samples are optimal for our goals. They
sure minimal transmission due to metallic coatings a
weakness of absorption due to Mylar foils. So it will b
interesting to investigate experimentally the optical transit
radiation of relativistic electrons passing through a stack
such samples randomly spaced in the vacuum.
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